Radiation tolerance of a 0.13µm commercial CMOS technology

F.Faccio, G.Anelli, S.Baldi, S.Bonacini, G.Cervelli, J.Christiansen, M.Despeisse, K.Hänsler, K.Kloukinas, A.Marchioro, P.Moreira, R.Szczygiel

Introduction

- With our resources, long cycles from early development to technology use
- Technologies are getting more complicated... and expensive
- Need to start ahead of time, and group more users

Cycle for quarter micron

1996	First discussions and measurements
1997	Proposal RD49 "Radtol", measurements on 5 technologies
1998	First design: "DEEP1"
1999	First MPW1
2000	First dedicated engineering runs

Outline

- Technology choice
- Test structures
- TID results
- SEE results
- Conclusion (for the time being...)

Technology choice

- Skip 0.18μm already peak production
- Next wave: 0.13μm technology node
- Features of the chosen technology:
 - All-copper technology
 - Vdd=1.2-1.5 V
 - Triple gate oxide
 - Min lithographic image 0.11μm
 - 4 to 8 metal levels (options on stack)
 - Planarization and interlevel dielectrics with low-k
- Device options:
 - Standard, High and Low Vt NMOS and PMOS, ZeroVt NMOS
 - Ultra-thin gate oxide NMOS and PMOS
 - Thick oxide (2.5 V) NMOS and PMOS, ZeroVt NMOS
 - n+, p+ and pc resistors
 - Metal-Metal capacitors

Test structures

- Wafer with macros from foundry (received 1/02, hardware 01)
- SRAM from foundry for SEEs (received 10/01)
- Design of 5x5 mm² module in Foundry MPW, with RAL and Imperial College (submitted 11/02, received 3/03):
 - Individual transistors of all types (enclosed, linear)
 - Individual transistors for noise measurements
 - Resistors & Diodes
 - FoxFETs
 - Shift register for SEEs
 - Circuit building blocks (TDC, Fast serializer for optical digital transmission, bandgap, FEAmplifier, SRAM)

"CuTe1" module

Run options:

- 6 levels of metal (4 thin; 2 thick)
- Mimcap
- Op resistors
- All transistors (all Vts, all oxide thicknesses)

TID results

Chapters:

- Enclosed transistors
- Large linear transistors, W=10µm
- Narrow linear transistors, minimum W

TID results: enclosed transistors

- All TID irradiations with X-rays
- Negligible degradation for all thin-oxide enclosed transistors (NMOS and PMOS), for all parameters

TID results: enclosed transistors

- W=10 μ m, L = min size:
 - Standard, HighVt, LowVt, Ultrathin = 0.12μm
 - DualGate = 0.26μm; ZeroVt = 0.42μm

TID results: wide linear transistors

- PMOS overall comparable to enclosed transistors
- NMOS: edge effect (SMALL!!)

TID results: wide linear transistors

Leakage current changes with dose: peak at 1-5Mrad

TID results: narrow linear transistors

- Change in Vt and subthreshold slope, hence leakage
- Strong edge effect: Narrow Channel Effect
- All transistor types affected

FEE Workshop, Snowmass, June 03

Federico Faccio - CERN/MIC

TID results: narrow linear transistors

Leakage current changes with dose: peak at 1-3Mrad

TID results: narrow linear transistors

- Threshold voltage shift not negligible especially for Dual Gate
- Peak in degradation for NMOS at 1-5Mrad

TID results: FOXFETs

- Transistors on Field Oxide
- PC or M1 "gate"
- N+ diffusion or Nwell Source & Drain
- Only Nwell-Nwell has some current (at voltages well above Vdd!)

NWell FOXFET, size 5/0.92

TID results: summary

- Enclosed transistors are very good, as expected (very thin gate oxide)
- DualGate transistors (for I/Os and analog at 2.5V)
 have to be used carefully Vt shift is not negligible at
 high doses
- Large linear transistors look very good also for vast majority of applications
- Narrow linear transistors are more sensitive
- From FOXFETs, lateral isolation is not a problem
- Where is the "border" between narrow and large channels?
- Annealing effects to be studied in more detail

SEEs on SRAM

- 16k x 16 SRAM design from Foundry (linear transistors)
- Irradiation at PSI: up to 60MeV protons
- Flux: 1-4x10⁸ p/cm²s
- Proton energy 10, 20, 40 and 60 MeV
- 2 patterns: all-1 and all-0
- SEL detection active at all times
- Vdd = 1.5V and 1.25V

SEEs on SRAM

- Equivalent TID of 260 krad (Si)
- No SEL detected
- σ increases by 20-30% for TID of about 90 krad
- \bullet increases by 20-30% for lower power supply (1.25V)

Conclusion (for the time being...)

TID

- Enclosed transistors are very good
- No guardring needed
- Linear transistors look very promising, details still to be studied (annealing, narrow channel effects)
- DualGate are more sensitive: careful use

SEEs

- Sensitive charge smaller, higher SEU sensitivity
- NB: without enclosed transistors, error rates can be considerably higher than for present 0.25µm designs
- SEL not observed and not expected to be a crucial issue for our applications (careful: design-dependent sensitivity)